Up
Alphabet Option (1024) - New Malthusian Scale - constant rate
Alphabet Option (512) - New Malthusian Scale - constant rate
Alphabet Option (1024) - New Malthusian Scale - variable rate
Alphabet Option (512) - New Malthusian Scale - variable rate 

The Mechanism Of Population Doubling

Alphabet Option For The New Malthusian Scale (constant rate) 

A-pops 1 2 4 8 16 32 64 128 256 512 1024
B-pops 1 2 4 8 16 32 64 128 256 512 1024
C-pops 1 2 4 8 16 32 64 128 256 512 1024
D-pops 1 2 4 8 16 32 64 128 256 512 1024
E-pops 1 2 4 8 16 32 64 128 256 512 1024
F-pops 1 2 4 8 16 32 64 128 256 512 1024
G-pops 1 2 4 8 16 32 64 128 256 512 1024
H-pops 1 2 4 8 16 32 64 128 256 512 1024
I-pops 1 2 4 8 16 32 64 128 256 512 1024
J-pops 1 2 4 8 16 32 64 128 256 512 1024
K-pops 1 2 4 8 16 32 64 128 256 512 1024
L-pops 1 2 4 8 16 32 64 128 256 512 1024
M-pops 1 2 4 8 16 32 64 128 256 512 1024
N-pops 1 2 4 8 16 32 64 128 256 512 1024
O-pops 1 2 4 8 16 32 64 128 256 512 1024
P-pops 1 2 4 8 16 32 64 128 256 512 1024
Q-pops 1 2 4 8 16 32 64 128 256 512 1024
R-pops 1 2 4 8 16 32 64 128 256 512 1024
S-pops 1 2 4 8 16 32 64 128 256 512 1024
T-pops 1 2 4 8 16 32 64 128 256 512 1024
U-pops 1 2 4 8 16 32 64 128 256 512 1024
V-pops 1 2 4 8 16 32 64 128 256 512 1024
W-pops 1 2 4 8 16 32 64 128 256 512 1024
X-pops 1 2 4 8 16 32 64 128 256 512 1024
Y-pops 1 2 4 8 16 32 64 128 256 512 1024
Z-pops 1 2 4 8 16 32 64 128 256 512 1024

Table 1: Alphabet pops at constant growth rate, based on the New Malthusian Scale

Note:  1A-pop = 1024 pops, 1B-pop = 1024 A-pops, 1 C-pop = 1024 B-pops etc.

This is the simplest scale for exponential growth, for growth subject to the Malthusian Growth Model, which assumes a constant rate of growth. The advantage of this scale is that it makes it easy to calculate how much time must elapse to reach any figure on the table. 

Pick any number (except 1) from any row. That is your target row. Each row represents 10 population doublings (don't forget, 1 A-pop = 1024 pops etc). Hence, count the number of rows, minus 1 for the target row, and multiply by 10. Then, add any individual doublings from the target row.

So, if your population doubling time is 1 hour, then you will reach 32 Z-pops in: 
(((26 - 1) x 10) + 5) hours = 255 hours. 

If you prefer, you can use a version of this table with the 1024 column removed

Back to Top


 
Send email to exponentialist@optusnet.com.au with questions or comments about this web site.
Copyright 2001 David A. Coutts
Last modified: 08 November, 2009