|
|
||||||||||
|
|
|
|||||||||
|
|
|
|
||||||||
|
![]() Contact
telephone number (Australia)
|
Current position Senior Lecturer at the School of Agriculture, Food and Wine, on the Waite Campus, University of Adelaide. I work on experimental and theoretical studies of insect collective behaviour and its application to agriculture and pest control. My team currently focuses on locust hopper bands, ant and termite colonies. Current opportunities for Honours, PhD and Postdoc projects Are you interested in studying locust mass movement using drones and cutting edge computer simulations? Would you like to bring a new light on the evolution of sociality and group living by studying collective foraging and nutrition in insects? I am building an Insect Collective Behaviour team at the University of Adelaide. Contact me for Honours, PhD and Postdoc opportunities. Current research projects - Insect Collective Behaviour Locust collective movement To develop a better understanding of locust collective movement, we are combining lab and field experiments (which involve innovative techniques such as tracking individuals with a UAV) with computer simulations, which allow us to simulate up to millions of locusts using CUDA (parrallel computation on graphic cards). Ultimately, our goal is to build a model that will provide control operations with a better knowledge of band movement and trajectories so that improved methods such as barrier spraying can be optimized. Collective nutrition in social insects
Nutrition is at the centre of most collective behaviour
phenomena. In social insects such as ants and termites, foraging is handled by
a sub-group of workers who not only have to fulfil their own nutritional
requirements but also provide the rest of the colony with the nutrients they
require. How does the information pertaining to the nutritional state of the
colony flows and how do workers adapt their foraging strategies in order to achieve
efficient communal nutrition? We will tackle these questions using a combination
of lab experiments, tracking nutrients with fluorescent dies and individuals
with RFID tags and computer vision, and computer simulations implementing the
behaviour and nutritional processes as well as their evolution.
My approach Very often in Nature, phenomena appearing at a "macroscopic" level (e.g. a group of animals or a tissue) result from a multitude of interaction at a lower "microscopic" level (e.g. a massive number of individual animals or cells) in a way that appears to be emergent and hard to predict. Linking these two levels, or more generally, bridging the gaps between scales is a topic that never ceases to fascinate me. To achieve this goal, I use methods originated from the framework of self-organization and non-linear systems, where models are used to predict how local rules at the microscopic level result in patterns observed at the macroscopic level. Models are built using a thorough experimental quantification of behaviour and interactions at the individual or microscopic level - this is a bottom-up approach where the rules used in the model correspond, as much as possible, to mechanisms observed and measured empirically.
Once the model is implemented, its predictions about the collective patterns, or macroscopic level, are compared to experimental results. Such cycles of studies involving both experiments and models have been successfully applied to social insect collective behaviour such as foraging and trail formation, nest construction, division of labour etc... They are increasingly used to study other animal collective behaviour such as fish schools, bird flocks, or locust marching bands and swarms (my current favourite model system), but have been and will more and more be used to study organization of large groups of microscopic organisms, cells or any complex phenomena observed in biological systems. Why are these questions important? They're a key to understand how animal societies work, which is fascinating enough by itself in my opinion, but it's also opening new perspectives in understanding the evolution of sociality, and even more broadly, understanding how things organize at a level from the complex interactions happening at a lower level is probably holding many exciting new insights about evolution of life in general. Previous employement /education - 2004: PhD - Doctorat de l'Universite Paul Sabatier, Toulouse, France. Etude experimentale et modelisation de la morphogenese des reseaux de galeries chez la fourmi Messor sancta. (An experimental and theoretical study of the morphogenesis of tunnel networks in the ant Messor sancta). - 2005: Postdoctoral Research Associate, University of Oxford (with Steve Simpson, Iain Couzin and David Sumpter). 2006-2014: Postdoctoral researcher at the School of Biological Sciences, The University of Sydney.
See also: Steve
Simpson The
Australian Centre for Field Robotics at USyd The
Australian Plague Locust Commission |
For a full and up to date list, please check: https://scholar.google.com/citations?user=fNU0CjgAAAAJ&hl=en Lihoreau, M., Gómez-Moracho, T., Pasquaretta, C., Costa, J., & Buhl, J. (2018). Social nutrition: an emerging field in insect science. Current Opinion in Insect Science, 28, 73-80. Poissonnier, L., Lihoreau, M., Gomez-Moracho, T., Dussutour, A., & Buhl, J. (2018). A theoretical exploration of dietary collective medication in social insects. Journal of Insect Physiology, 106(1), 78-87. Cullen, D., Cease, A., Latchininsky, A., Ayali, A., Berry, K., Buhl, J., ..., Rogers, S. (2017). From Molecules to Management: Mechanisms and Consequences of Locust Phase Polyphenism. Advances in Insect Physiology, 53, 167-285. doi:10.1016/bs.aiip.2017.06.002 Lihoreau M, Charleston MA, Senior AM, Clissold FJ, Raubenheimer D, Simpson SJ , Buhl J. Collective foraging in spatially complex nutritional environments. Philosophical Transactions of the Royal Society B, 372, 20160238-1-20160238-11. doi:10.1098/rstb.2016.0238 Lihoreau, M., Clarke, I. M., Buhl, J., Sumpter, D. J. T., & Simpson, S. J. (2016). Collective selection of food patches in Drosophila. Journal of Experimental Biology, 219(5), 668-675. doi:10.1242/jeb.127431 Senior, A. M., Lihoreau, M., Charleston, M. A., Buhl,
J., Raubenheimer, D., & Simpson, S. J. (2016). Adaptive collective
foraging in groups with conflicting nutritional needs. Royal Society
Open Science, 3(4), 150638-1-150638-15. doi:10.1098/rsos.150638 Buhl, J., & Rogers, S. (2016). Mechanisms
underpinning aggregation and collective movement by insect groups.
Current Opinion in Insect Science, 15, 125-130.
doi:10.1016/j.cois.2016.04.011 Senior, A., Charleston, M. A., Lihoreau, M.,
Buhl, J., Raubenheimer, D., & Simpson, S. J. (2015). Evolving
nutritional strategies in the presence of competition: a geometric
agent-based model. PLoS Computational Biology, 11(3),
e1004111-1-e1004111-24. doi:10.1371/journal.pcbi.1004111 Romey, W. L., Smith, A. L., & Buhl, J.
(2015). Flash expansion and the repulsive herd. Animal Behaviour, 110,
171-178. doi:10.1016/j.anbehav.2015.09.017 Herbert-Read, J. E., Buhl, J., Hu, F., Ward, A.
J., & Sumpter, D. J. (2015). Initiation and spread of escape waves
within animal groups. Royal Society Open Science, 2(4),
1403550-1-140355-11. doi:10.1098/rsos.140355 Lihoreau, M., Buhl, J., Charleston, M. A., Sword,
G. A., Raubenheimer, D., & Simpson, S. J. (2015). Nutritional
ecology beyond the individual: a conceptual framework for integrating
nutrition and social interactions. Ecology Letters, 18(3), 273-286.
doi:10.1111/ele.12406 Lihoreau M., Buhl J., Charleston M., Sword G.A., Raubenheimer D., Simpson S.J (2014) Modelling nutrition across organizational levels: from individual to superorganisms. Journal of Insect Physiology, DOI: 10.1016/j.jinsphys.2014.03.004 Buhl J., Sword G.A., Simpson S.J. (2012) Using field data to test locust migratory band collective movement models. Interface Focus, 2:757-763 Cummings D. O., Buhl J., Lee R. W., Simpson
S. J., Holmes S. P. (2012) Can estimates of niche Hansen M. J., Buhl J., Bazazi S., Simpson S.
J., Sword G. A. (2011) Cannibalism in the lifeboat – Buhl J., Sword G. A., Clissold F. J., Simpson S. J. (2011) Group structure in locust migratory bands. Behavioral Ecology And Sociobiology, 65:265-273 Escudero C., Yates, C.A., Buhl J., Couzin I. D., Erban R., Kevrekidis I. G., Maini P.K. (2010) Ergodic Directional Switching in Mobile Insect Groups. Physical Review E, 82,011926 Yates, C.A., Erban R., Escudero C., Couzin I. D., Buhl J., Kevrekidis I. G., Maini P.K., Sumpter D. J. (2009) Inherent noise can facilitate coherence in collective swarm motion. PNAS, 106:5464-5469 Buhl J., Hicks K., Miller E. R., Persley S., Alinvi O., Sumpter D. J. (2009) Shape and efficiency of wood ant foraging networks. Behavioral Ecology and Sociobiology, 63:451-460 Sumpter D. J., Buhl J., Biro D., Couzin I. D. (2008) Information transfer in moving animal groups. Theory in Biosciences, 127:177-186 Bazazi S., Buhl J., Hale J. J., Anstey M. L., Sword G. A., Simpson S. J., Couzin I. D. (2008) Collective Motion and Cannibalism in Locust Migratory Bands. Current Biology, 18:735-739ARTICLE Buhl J., Gautrais J., Deneubourg, J.L., Kuntz P., Theraulaz. (2006) The growth and form of tunnelling networks in ants. Journal of Theoretical Biology, 243, 287-298. PDF Buhl, J., Sumpter, D.J.,
Couzin, I.D., Hale, J., Despland, E, Miller, E & Simpson, S.J.
(2006) From disorder to order in
marching locusts. Science,
312, 1402. Buhl J., Gautrais J., Reeves N., Sole R.V., Valverde S., Kuntz P., Theraulaz G. (2006) Topological patterns in street networks of self-organized urban settlements. European Physical Journal B, 49, 513-522.PDF Buhl J., Deneubourg J.L., Grimal A. and Theraulaz G. (2005) Self-organized digging activity in ant colonies. Behavioral Sociobiology and Ecology. 58, 9-17.ARTICLE Buhl J., Gautrais J., Sole R.V., Kuntz P., Valverde S., Deneubourg J.L., Theraulaz G. (2004) Efficiency and robustness in ant networks of galleries. European Physical Journal B, 42, 123-129.PDF Buhl J., Gautrais J., Deneubourg J.L. and Theraulaz G. (2004) Nest excavation in ants: group size effects on the size and structure of tunneling networks. Naturwissenschaften, 92:602-606 Buhl J., Deneubourg J.L., Theraulaz G. (2002) Self-Organized Networks of Galleries in the Ant Messor Sancta, Lecture Notes in Computer Science, 2463:163-175
Right: Laboratory exporimental set-up allowing us to study locust marching in controlled conditions and using automated computer tracking. Left: A prototype of reflective tag glued to a locust nymph. These tags will allow us to track individual locusts in the field using an autonomous UAV equipped with a strobe and a camera (tracking method developped by the Australian Centre for Field Robotics). Marching locusts in Western Australia during the 2007 outbreak. |
||||||||
|
|
|
|
||||||||
|
©2010 - Video footage and pictures can only be used if credit is given to me, Jerome Buhl • E-mail me |